What is an eigencircle of a 2x2 matrix?


Bottom-up definition of an eigencircle


If \(\mathfrak{t}\) is a linear transformation, the relation between a vector \(\vec{x}\) and its image \(\mathfrak{t}\left(\vec{x}\right)\) can be described as

rotating the original vector until it is collinear with \(\mathfrak{t}\left(\vec{x}\right)\) and

scaling until its length is the same as the length of \(\mathfrak{t}\left(\vec{x}\right)\).

For each vector \(\vec{x}\) this effect can be described as a tuple \((s,\theta)\) where s is the scaling and θ the rotation.

The set of all possible couples of rotation and scaling \(\left(s,\theta\right)\ \)is a circle.

This circle is called the eigencircle of the linear transformation \(\mathfrak{t}\).


Top-down definition of an eigencircle


The eigencircle of a linear transformation \(\mathfrak{t}\) is a circle defined by all possible tuples \((s,\theta)\)

where

\(\theta=\angle\left(\vec{x,}\mathfrak{t}\left(\vec{x}\right)\right)\) is the angle between an original vector \(\vec{x}\) and its image \(\mathfrak{t}\left(\vec{x}\right)\ \)and

\(s=\frac{\|\mathfrak{t}(\vec{x})\|}{\|\vec{x}\|}\) is the scaling \(s\) from the original length \(\|\vec{x}\|\) to the final length \(\|\mathfrak{t}(\vec{x})\|\).

Eigencircle of the matrix A
Eigencircle of the matrix A

Formal denotation of an eigencircle


\({EC(\mathfrak{t})}_{polar}=\left\{\left(\ s_{\vec{x}},\theta_{\vec{x}}\right)\ |\ \exists\vec{x}=\left[\begin{matrix}x\\y\\\end{matrix}\right]\ and\ \mathfrak{t}\left(\vec{x}\right)=\left[\begin{matrix}s_{\vec{x}}&0\\0&s_{\vec{x}}\\\end{matrix}\right]\left[\begin{matrix}\cos{\theta_{\vec{x}}}&-\sin{\theta_{\vec{x}}}\\+\sin{\theta_{\vec{x}}}&\cos{\theta_{\vec{x}}}\\\end{matrix}\right]\left[\begin{matrix}x\\y\\\end{matrix}\right]=A\left[\begin{matrix}x\\y\\\end{matrix}\right]\right\}\)


\({EC(\mathfrak{t})}_{polar}=\left\{\left(s_{\vec{x}},\theta_{\vec{x}}\right) |\ \exists \vec{x}\ such\ that\ s_{\vec{x}}=\frac{\|\mathfrak{t}(\vec{x})\|}{\|\vec{x}\|} \ and\ \theta_{\vec{x}}=\angle(\vec{x},\mathfrak{t}(\vec{x}))\right\}\)


\({EC(\mathfrak{t})}_{cart}=\left\{\left(\lambda,\mu\right)\ |\ \exists\vec{x}=\left[\begin{matrix}x\\y\\\end{matrix}\right]and\ \mathfrak{t}\left(\vec{x}\right)=\left[\begin{matrix}\lambda&-\mu\\+\mu&\lambda\\\end{matrix}\right]\left[\begin{matrix}x\\y\\\end{matrix}\right]=\left[\begin{matrix}s_{\vec{x}}&0\\0&s_{\vec{x}}\\\end{matrix}\right]\left[\begin{matrix}\cos{\theta_{\vec{x}}}&-\sin{\theta_{\vec{x}}}\\+\sin{\theta_{\vec{x}}}&\cos{\theta_{\vec{x}}}\\\end{matrix}\right]\left[\begin{matrix}x\\y\\\end{matrix}\right]\right\}\)


Can I find the eigenvalues and eigenvectors of a matrix in a geometric way?


Using the concept of an eigencircle the eigenvalues and eigenvectors of a 2x2-matrix can be derived.

If the eigencircle of a matrix is constructed using the steps below, the eigenvectors and eigenvalues can be read from the geometric construction.

Construct the circle with center \(C(f,g)\) and radius \(\rho\).

\(f=\frac{\left(a+d\right)}{2}\)

\(g=\frac{\left(c-b\right)}{2}=-\frac{\left(b-c\right)}{2}\)

(The value of g is the negation of the formula in the articles)

\(\rho^2=\left(\frac{a-d}{2}\right)^2+\left(\frac{b+c}{2}\right)^2\)

Eigencircle of A: \(\left(\lambda-f\right)^2+\left(\mu-g\right)^2-\rho^2=0\)

Reading eigenvectors and eigenvalues from an eigencircle
Reading eigenvectors and eigenvalues from an eigencircle

Who defined the concept 'eigencircle'?


The concept eigencircle is described in two articles by EngleField and Farr.

Englefield, M. J., & Farr, G. E. (2006). Eigencircles of 2 x 2 Matrices. Mathematics Magazine Vol. 79 Oct.,2006, 281-289.

Englefield, M. J., & Farr, G. E. (2010). Eigencircles and associated surfaces. The Mathematical Gazette Vol.94 No. 531 (November 2010), 438-449.